

Retrospectives:	548	Days	to	Fix	One	Line	of	Code	 	
RYAN	LATTA		

A	year	and	a	half	of	retrospectives	where	the	same	problem	evaded	a	solution.	We	changed	course.	We	tuned	our	retrospectives	to	focus	
on	experiments	and	staying	singularly	focused	on	the	problem.	The	problem	was	one	line	of	code.	

1. INTRODUCTION	

Flaky	automated	tests	plague	teams	all	over	the	world—as	do	ineffective	retrospectives.	I	was	on	a	team	that	
suffered	under	flaky	automated	tests	and	a	year-and-a-half	of	retrospectives	that	failed	to	improve	them.	

Every	retrospective	we	brought	up	our	automated	tests	as	a	problem,	but	for	a	year	and	a	half,	we	couldn’t	
fix	 them.	 It	wasn’t	until	 I	pushed	 for	 some	changes	 that	we	eventually	 saw	a	path	 forward.	We	changed	our	
retrospectives,	got	the	insight	we	needed,	and	made	the	right	changes	to	get	past	our	problem.	

This	was	 a	hard	path	 though.	 I	was	 an	 engineer	 and	 still	 discovering	what	 it	meant	 to	 affect	 change.	My	
approach	alienated	those	around	me	and	 jeopardized	the	results	 that	we	all	wanted	so	badly.	 In	the	end,	we	
navigated	that	and	found	our	path	forward.	

This	is	a	story	about	changing	the	way	we	viewed	and	executed	our	retrospectives	to	finally	fix	the	one	line	
of	 code	 that	 plagued	us	 for	 a	 year-and-a-half.	 That	 one	 line	 removed	 the	 inconsistencies	 in	 our	 tests,	 led	 to	
better	 releases	 with	 less	 production	 defects,	 and	 caused	 the	 team	 to	 reconsider	 how	 they	 would	 use	
retrospectives	in	the	future.	

2. BACKGROUND	

Today	I	work	as	a	consultant	that	helps	build	high-performing	software	teams.	At	the	time	of	this	story,	I	was	
an	engineer	that	was	hired,	in	part,	to	help	my	employer	achieve	their	goals	of	test	automation.	

Two	colleagues	and	I	wound	up	on	the	market	at	the	same	time,	and	a	local	company	was	more	than	eager	
to	hire	us.	The	company	was	looking	for	talent	and	in	particular	talent	with	experience	with	test	automation.	
The	three	of	us	joined	with	the	hopes	that	we	would	usher	in	their	future	of	automated	testing.	

The	company	I	was	hired	into	was	around	six	years	old	and	had	grown	to	around	120	employees.	In	many	
ways	 it	 still	 embraced	 the	 cavalier	 attitude	 of	 a	 startup.	We	 had	 an	 interesting	mixture	 of	 technologies	 and	
products,	 but	 at	 the	 heart	 of	 it	 was	 a	 massive	 monolithic	 web	 server	 built	 in	 Java.	 This	 single	 server	 was	
responsible	for	the	entirety	of	the	business	running,	and	was	built	to	be	fast.	Within	its	tangled	code	were	the	
numerous	pivots	the	business	had	and	the	countless	features	that	were	barnacles	within	its	codebase.		

The	three	of	us	began	to	teach	the	techniques	and	tools	of	test	automation	to	the	rest	of	the	company.	We	
focused	primarily	on	acceptance	level	testing	using	Cucumber	and	Ruby,	but	also	spent	time	updating	the	unit	
level	tests	as	well.	It	took	some	time,	but	within	a	few	months,	everyone	was	writing	tests.	Unfortunately,	they	
didn’t	pass.	

We	were	also	fortunate	to	have	a	great	agile	leader	who	was	our	director	and	Scrum	Master.	I	considered	
him	my	role-model	and	I’d	spend	all	the	time	I	could	with	him.	I’d	sometimes	spend	days	ruminating	on	what	
he’d	 say	 before	 I’d	 realize	 the	 wisdom	 in	 it.	 Agility	 was	 his	 job,	 retrospectives	 his	 responsibility,	 yet	 as	 an	
engineer,	I	sought	to	change	our	retrospectives.		

	

Ryan	Latta,	803	Roaring	Springs	Dr,	Allen,	TX,	75002	email:	latta.ryan@gmail.com	
@recursivefaults	https://ryanlatta.com		
Copyright	2019	is	held	by	the	author.	

Retrospectives:	548	Days	to	Fix	1	Line	of	Code:	Page	-	2	

If	 you’ve	 been	 in	 a	 position	where	 you	wanted	 to	 affect	 change	well	 outside	 of	 your	 job,	 you	 know	 the	
struggle	that	I	endured	to	change	our	retrospectives.	I	was	foolish,	lucky,	and	it	worked.	

3. STARTING	OFF	

We	began	by	establishing	a	few	tests	using	the	tools	and	techniques	that	we	had	mastered	in	our	previous	job.	
This	 was	 broadly	 accepted,	 but	 there	 were	 some	 resistance	 and	 skepticism.	 Some	 of	 the	 quality	 assurance	
people	 were	 unsure	 what	 this	 automation	 would	 mean	 for	 their	 career.	 One	 even	 quit	 as	 they	 thought	
automation	was	 flawed	as	a	strategy.	Several	senior	engineers	were	concerned	that	 the	tools	we	chose	were	
inadequate	 to	 the	 task	 as	 they	were	 different	 from	 the	 core	 technologies	 in	 use	 elsewhere.	 This	was	 a	 Java	
shop,	and	we	were	introducing	Ruby.	

We	worked	 quickly	 to	make	 our	 case	 and	 show	 that	 we	 could	 build	 tests	 quickly	 that	 gave	 confidence.	
Thankfully	 the	 three	 of	 us	were	 hired	 in	 to	 set	 the	 direction,	 so	we	had	 support	 from	management	 to	 push	
forward.	 Even	 though	 we	 lost	 one	 person,	 and	 several	 engineers	 were	 concerned	 about	 the	 new	 non-java	
technologies,	everyone	was	willing	to	try.	

Our	 task	 then	 turned	 to	 teach	 people	 how	 to	 write	 automated	 tests.	 This	 started	 slowly	 at	 first,	 but	
engineers	were	quick	to	pick	up	the	new	technology.	Quality	assurance	struggled	a	bit	more	as	they	had	always	
relied	on	manual	testing,	but	we	pulled	them	in	to	help	engineers	understand	what	to	test.	As	the	team	wrote	
tests	we	saw	a	problem	emerge.	The	tests	failed	inconsistently.	

We	held	retrospectives	every	sprint,	and	 in	every	one	of	 them,	we’d	be	asked	to	 identify	what	went	well,	
what	didn’t,	and	what	we	wanted	to	change.	“Flaky	automated	tests,”	made	its	first	appearance	in	what	would	
become	the	next	year-and-a-half.	In	our	retrospectives	we’d	generate	ideas	and	choose	the	top	3-5	actions.	The	
team	decided	that	the	resolution	to	those	flaky	tests	was	that	they	hired	the	three	of	us	as	experts,	so	we	would	
fix	the	issue	soon	enough.	

3.1 After	Three	Months	
Three	months	 later	 and	 after	 numerous	 retrospectives,	 the	 flaky	 tests	 still	made	 its	 regular	 appearance.	 In	
retrospective	we	 saw	 that	while	 now	 everyone	was	 developing	 their	 skills	 and	 learning	 the	 tools,	 it	makes	
sense	 that	 things	 are	 imperfect.	We	 therefore	 needed	more	 time	 for	 everyone	 to	 become	 skilled	 at	 testing	
before	we	could	expect	the	tests	to	be	stable.		

3.2 After	Six	Months	In	
Six	 months	 in	 the	 attitude	 shifted.	 In	 our	 retrospectives,	 the	 flaky	 automated	 test	 issue	 would	 make	 its	
appearance	as	always,	but	the	team	would	avoid	the	topic.	We’d	vote	on	other	things	to	talk	about.	The	team	
was	tired	of	trying	to	fix	the	tests.	By	now,	the	team	knew	how	to	write	tests	and	things	should	be	better	than	
they	are.	The	team	had	tried	relying	on	us	as	experts,	 thinking	the	database	was	a	problem,	networking	was	
inconsistent,	shared	systems	caused	problems,	and	that	 the	 technologies	 themselves	were	buggy.	This	was	a	
problem	that	the	team	had	no	more	energy	to	give	and	so	silently	it	was	ignored.	

Throughout	these	six	months,	even	as	our	tests	continued	to	fail	we	had	some	interesting	side-effects.	We	
operated	with	a	definition	of	done	that	required	that	we	write	automated	tests	and	that	all	the	tests	pass.	These	
two	items	created	an	interesting	challenge	for	the	team	to	navigate.	How	do	we	consider	our	work	done	if	the	
tests	pass	 inconsistently?	Well,	 the	 team	would	watch	 the	 testing	dashboard.	Every	so	often	 the	 tests	would	
pass.	As	soon	as	 it	did,	everyone	would	claim	victory	and	consider	 their	work	done.	Then	 the	 tests	could	go	
back	 to	 failing.	 The	 other	 interesting	 side	 effect	 was	 that	 we	 didn’t	 stop	 shipping	 to	 production	 or	 stop	
developing	new	features.	We	 just	didn’t	have	much	confidence	 in	our	testing	to	show	that	we	were	shipping	
high	quality.	This	led	to	a	lot	of	production	support.	Our	team	leads	took	that	as	their	responsibility	and	after	
six	months	their	entire	job	day	and	night	was	fielding	support	issues.		

3.3 After	One	Year	
Near	my	 year	 anniversary	 I	 attended	 the	 Lean	Agile	 DC	 conference	 and	 during	 the	 closing	 keynote	 by	 Jabe	
Bloom,	my	mind	was	blown.	I	was	introduced	to	several	concepts	from	lean	manufacturing	and	that	sent	me	on	
a	path	to	learn	as	much	as	I	could	as	quickly	as	I	could.	Through	hours	of	reading	books	like,	The	Toyota	Way,	
This	is	Lean,	The	Toyota	Kata,	and,	The	Lean	Startup,	I	arrived	at	several	conclusions.	First,	we	were	attempting	
to	 fix	 too	 many	 things	 at	 once	 and	 that	 we	 should	 focus	 on	 one	 problem	 until	 it	 was	 solved.	 Also,	 in	 our	
retrospectives,	we	were	 creating	 too	many	 actions	 and	we’d	 benefit	 from	one	 single	 action	 that	 had	whole-

Retrospectives:	548	Days	to	Fix	1	Line	of	Code:	Page	-	3	

team	 focus.	Also	 that	 our	disposition	 to	 arrive	 at	 an	 action	would	be	better	 replaced	by	 an	 experiment	or	 a	
question	to	answer.	Assuming	we	had	the	answer	was	getting	us	nowhere.	

I	didn’t	know	what	to	do	with	them,	but	I	was	sure	that	I	was	on	to	something.	My	Scrum	Master	was	also	
the	director	 and	my	 role-model.	He	was	brilliant	 and	made	everything	 seem	effortless.	 I’d	 find	 any	 excuse	 I	
could	to	pick	his	brain	on	any	topic	related	to	teams	and	agility.	Often	I’d	finally	realize	his	point	several	days	
after	our	conversation.	We’d	spar	regularly	on	certain	points,	and	I	considered	myself	truly,	fortunately,	to	be	
near	him.	

Normally,	I’d	bring	something	to	him,	we’d	debate,	and	ultimately	he’d	have	some	wisdom	that	would	help	
me	see	that	I	wasn’t	right.	When	I	brought	my	conclusions	to	him	this	time,	he	had	to	think	about	it.		

I	 brought	my	 conclusions	 to	my	 Scrum	Master.	 I	 wish	 I	 could	 say	 this	 was	 a	 conversation	where	 I	 was	
consulting	my	role-model	and	seeking	advice.	In	truth,	I	brought	these	learnings	to	him	as	a	demand	that	he	do	
something	 with	 them	 in	 our	 retrospectives.	 I	 saw	 him	 as	 the	 path	 to	make	 the	 changes	 that	 I	 wanted	 and	
brought	my	request	to	him.	I	didn’t	care	what	he	was	dealing	with	or	what	his	thoughts	were	or	his	opinions.	I	
wanted	him	to	say	yes	to	my	request	and	deliver.	

Three	more	months	passed.	

3.4 After	One	Year,	Three	Months	
These	three	months	were	agony	for	me.	I	was	aware	enough	to	realize	that	in	making	demands	of	my	director	
and	 Scrum	Master	 that	 I	 had	 jeopardized	 what	 I	 wanted	 at	 the	 same	 time.	 If	 I	 checked	 in	 with	 him	 I	 may	
accidentally	make	my	request	too	much	of	a	burden	compared	to	everything	else	and	that	would	be	the	end	of	
it.	 I	had	to	wait	and	hope	that	something	would	change.	My	demands	and	 lack	of	empathy	put	everything	at	
risk.	

A	year	and	three	months	have	passed	and	we	walked	into	our	retrospective.	We	were	prepared	to	put	our	
sticky	notes	about	what	went	well,	what	didn’t,	and	what	we’d	change.	Instead,	we	were	greeted	with	a	picture	
of	a	sailboat.	Our	Scrum	Master	went	on	to	explain,	“Imagine	we	are	this	sailboat	out	at	sea.	The	wind	in	our	
sails	 that	 push	 us	 forward	 are	 the	 things	 that	 are	 going	well	 for	 us.	 The	 anchor	 beneath	 the	waves	 are	 the	
things	holding	us	back.”	We	identified	the	things	that	worked	well	for	us	and	the	things	that	held	us	back.	He	
had	us	prioritize	those	anchoring	items	and	our	flaky	tests	emerged	as	the	biggest	issue	that	we	had.	This	was	
the	issue	that	for	months	now	we	were	ignoring	in	our	retrospectives	and	now	was	in	the	spotlight.	

Then	my	 Scrum	Master	 asked	us	 to	 vote	 on	 three	 to	 five	 action	 items.	 I	 looked	 at	 him	 incredulously.	He	
looked	back	at	me	confused.	 In	my	requests	 to	him,	 I	had	brought	up	 that	we	needed	 to	 focus	on	one	single	
experiment	instead	of	three	to	five	actions.	

I	 stepped	 into	 the	 conversation.	Throughout	 this	 year	 and	a	half,	 the	 team	had	 split	 into	 camps	 that	had	
theories	about	our	tests.	One	camp	believed	that	the	problem	was	in	that	we	were	using	unproven	technology	
in	 our	 tests	which	were	 the	 source	 of	 the	 instability.	 Another	 camp	believed	 that	 it	was	due	 to	 all	 the	 tests	
running	against	a	single	shared	system.	Truthfully	I	was	in	this	second	camp,	but	I	took	a	neutral	position	in	
this	conversation.	

I	wanted	each	group	to	consider	the	assumptions	behind	their	approach.	For	each	group,	I	proceeded	to	ask	
a	series	of	questions	to	tease	out	the	assumptions.	For	the	camp	that	believed	the	tech	was	bad,	I	asked	how	
they’d	know	that	in	re-writing	in	a	new	tech	would	result	in	anything	other	than	moving	the	problem	over	to	
the	new	technology.	For	the	camp	that	believed	it	was	a	database	issue,	how	would	they	know	that	the	issue	
wasn’t	 in	 the	test	code?	While	both	camps	believed	they	were	right	 I	asked	each	a	question,	 “Would	you	bet	
your	job	on	it?”		

Asking	this	question	is	highly	confrontational	and	I	advise	against	using	it	unless	you’re	sure	people	trust	
you.	I	developed	this	question	after	reading	some	material	on	confidence.	Asking	this	question	forced	everyone	
to	 consider	how	confident	 they	were	 in	 their	 solution.	The	answers	 to	 the	question	 revealed	 that	 they	were	
much	less	certain	than	they	let	on.	This	question,	while	effective	has	the	potential	to	destroy	the	trust	you	have	
in	your	relationships	by	questioning	the	validity	of	their	employment.	

From	here	I	asked	what	we	could	do	to	find	out	what	the	problem	actually	is.	The	team	was	quick	to	point	
out	that	we	could	track	the	problems	and	see	if	a	pattern	emerged.	We	decided	to	have	our	testing	tools	track	
all	failures	in	a	database	and	build	a	small	web	page	to	visualize	the	failures.	

Retrospectives:	548	Days	to	Fix	1	Line	of	Code:	Page	-	4	

3.5 After	One	Year,	Six	Months	
Over	the	next	 three	months,	our	retrospectives	stayed	singularly	 focused	on	the	problem	of	 flaky	automated	
tests.	 In	 each	 retrospective,	we’d	 review	what	where	we	were	with	 gathering	data	 and	what	 our	next	 steps	
should	be.	It	was	during	this	time	the	team	and	I	experienced	something	that	troubled	us.	

Even	though	our	retrospective	had	only	one	action	for	us	to	take,	time	and	time	again,	we	would	come	into	
our	retrospectives	to	report	that	we	not	only	didn’t	make	progress,	but	we	didn’t	take	any	action.	It	turns	out	
that	 as	 a	 team	we	were	 really	 bad	 at	 staying	 focused	 on	 that	 one	 item.	We	 let	 any	 and	 all	 other	work	 take	
priority	and	it	wasn’t	until	several	retrospectives	passed	that	the	message	hit	home	for	us.	We	have	to	make	
improvement	 a	 priority	 or	 nothing	 changes.	We	had	 to	 choose	 to	 act	 on	 our	 single	 improvement	 instead	 of	
moving	on	to	the	next	task	or	story.	We	had	to	choose	to	improve	instead	of	doing	more	work.	Here	we	were,	a	
team	of	smart	people	who	were	incapable	of	taking	action	that	would	lead	us	out	of	our	problem.	

Finally,	a	day	came	and	someone	tapped	me	on	the	shoulder.	He	asked	me	to	come	to	look	at	the	results	of	
the	data	collection.	By	now	we	had	collected	data	for	just	a	few	weeks,	but	the	data	couldn’t	have	been	more	
clear.	Almost	every	single	problem	was	focused	on	one	tiny	bit	of	shared	test	code.	We	looked	at	the	code	that	
our	 data	 pointed	 to	 and	 our	 jaws	 dropped.	We	 instantly	 saw	 the	 problem	 in	 the	 code.	 I	 remember	my	 co-
worker	asked,	“Should	I	get	the	team	together	to	show	them	this?”	My	reaction	was	simple,	“Fix	it	now,	we	can	
talk	about	 this	 forever!”	He	made	 the	change,	pushed	 it,	 and	we	watched	as	all	of	our	 tests	 suddenly	 turned	
green	and	stayed	green.	

There	was	no	celebration	yet,	nor	was	 their	applause.	There	was	dread.	Normally	when	 the	 tests	passed	
more	 than	 once	 it	meant	 something	 truly	 catastrophic	 happened.	 The	 team	was	 beginning	 to	wonder	what	
critical	part	of	 the	system	went	so	bad	that	 it	messed	this	up.	We	told	 them	how	we	 found	the	problem	and	
fixed	it.	

We	stopped	work	and	celebrated.	
Everyone	looked	at	the	data	and	the	change	in	the	code.	There	was	no	debate	or	second	guesses.	No	other	

alternative	existed.	It	was	painfully	obvious	to	the	entire	team	that	this	was,	in	fact,	the	core	problem	and	we	
did,	in	fact,	fix	it.	

From	that	day	forward	the	team	looked	to	me	for	advice	on	retrospectives.	I	didn’t	stay	long	for	unrelated	
reasons.	I	remember	during	the	retrospective	we	had	after	we	fixed	this	problem	the	question	on	everyone’s	
mind	was,	“Why	did	it	take	so	long	to	fix	that	one	line?”	I	offered	the	team	this,	“Maybe	improving	is	a	muscle	
and	it’s	one	that	isn’t	very	strong	with	us	yet.	It	took	us	three	months	this	time	around,	I	wonder	if	we’ve	grown	
enough	to	tackle	the	next	problem	sooner.”		

The	team	liked	that	thought,	but	I	wouldn’t	be	around	to	see	what	impact	it	had.	I	put	my	notice	in	shortly	
after.	I	wanted	to	be	a	Scrum	Master	myself,	and	while	I	was	surrounded	by	great	leaders	where	I	could	have	
learned	a	lot,	there	was	no	opportunity	for	me	to	transition	away	from	development.	

4. WHAT	WE	LEARNED	

Throughout	 this	 experience,	 there	were	numerous	 things	 that	 I	 learned	 that	 I’d	 like	 to	 share.	 These	 lessons	
have	re-taught	themselves	to	me	over	and	over	in	the	years	since	this	story.	

4.1 Stay	focused	on	a	single	problem	until	it’s	fixed	
Previous	retrospectives	we’d	start	with	a	clean	board	each	time.	A	new	set	of	ideas	and	problems.	This	ability	
to	clean	the	slate	allowed	us,	in	time,	to	censor	our	one	key	problem	out	of	the	picture.	Staying	focused	on	one	
problem	holds	the	team	to	a	clear	purpose	of	improvement.	

4.2 Try	1	action	item	instead	of	3-5	
Similar	 to	 the	 first	 learning,	 reducing	 the	 number	 of	 improvements	 was	 key	 to	 our	 success.	 In	 our	 early	
retrospectives,	 we’d	 leave	 with	 a	 list	 of	 actions.	 We’d	 rarely	 complete	 any	 of	 them,	 and	 we	 could	 easily	
reconcile	 that	 as	 other	 people	 didn’t	 finish	 theirs	 either.	 When	 we	 reduced	 our	 efforts	 to	 one	 there	 was	
nowhere	 to	hide.	We	had	 to	 look	at	ourselves	and	our	 inability	 to	do	one	single	action.	That	stark	reflection	
eventually	spurred	us	to	action	for	the	first	time.	

4.3 Different	retrospective	activities	bring	out	different	things	
Our	early	retrospective	format	was	the	common	three-column,	what	went	well,	what	didn’t,	and	what	would	
you	change.	While	simple	and	at	times	effective	it	brought	only	certain	items	out	in	certain	ways.	Eventually,	

Retrospectives:	548	Days	to	Fix	1	Line	of	Code:	Page	-	5	

we	 were	 able	 to	 exploit	 this	 format	 to	 avoid	 talking	 about	 issues.	 It	 wasn’t	 until	 we	 did	 the	 Anchors	 and	
Engines	retrospective	that	we	saw	that	the	issue	that	hurt	us	the	most	was	also	the	one	we	were	avoiding.	

4.4 Questions	and	hypothesis	are	great	action	items	
It	 is	 easy	 for	 a	 team	 to	 believe	 they	 have	 the	 solution	 to	 any	 problem.	 It’s	 far	 rarer	 for	 that	 to	 be	 true.	 By	
acknowledging	this	truth	and	focusing	our	efforts	on	learning	and	testing	what	assumptions	we	have	we	can	
unlock	our	abilities	to	improve.	Today	I	often	frame	action	items	to	be	a	hypothesis	where	they	must	answer	
three	 questions:	 What	 will	 we	 do,	 how	 will	 we	 know	 it	 worked,	 and	 when	 can	 we	 check?	 These	 create	 a	
testable	solution	that	doesn’t	leave	the	team	too	much	room	to	be	lost	in	the	land	of	solutions.	

4.5 Empathy	matters	
When	 I	 ravenously	 learned	what	 I	 could	about	 lean	manufacturing	after	 attending	 the	 conference	 I	 took	my	
conclusions	to	my	Scrum	Master.	I	never	understood	his	world,	problems,	or	needs.	I	made	my	demands	of	him	
and	put	everything	at	risk.	I	became	a	nuisance	and	risked	nagging	him	to	the	point	of	taking	no	action.	Later,	
when	 I	 dismantled	 the	 team’s	 ideas	 for	 how	 to	 fix	 the	 problem	 I	 asked	 confrontational	 questions.	 I	 was	
inexperienced	and	didn’t	fully	understand	how	this	question	would	feel.	Thankfully	I	worked	with	people	who	
were	better	than	me	and	worked	through	that	to	find	a	way	forward.	Know	the	lives	and	worlds	of	the	people	
you	work	with.	Work	with	them	through	empathy.	Be	their	partners	and	you	can	avoid	so	many	of	the	mistakes	
I	made.	

4.6 If	the	problem	is	known	enough	the	solution	becomes	obvious	
When	we	came	up	with	our	ideas	of	how	to	fix	things	we	were	guessing.	Our	guesses	were	full	of	assumptions	
that	we	weren’t	going	to	verify.	It	wasn’t	until	we	acknowledged	those	assumptions	that	we	realized	we	didn’t	
really	understand	the	problem.	It	was	only	after	we	gathered	data	that	we	saw	the	truth.	Everyone	was	wrong,	
and	there	was	one	 line	of	code	that	needed	our	attention.	When	we	found	it	 the	answer	was	so	obvious	that	
even	our	team	who	couldn’t	agree	on	an	approach	all	agreed.	There	was	no	debate	or	questions	or	alternatives.	
It	was	the	obvious	work	to	do.	Understanding	the	problem	clearly	makes	the	path	forward	obvious.	

5. ACKNOWLEDGEMENTS	

This	 story	 exists	 because	 I	 was	 surrounded	 by	wonderful	 people.	 I	 specifically	 want	 to	mention	my	 Scrum	
Master	and	role-model	at	the	time,	Matt	Philips.	He	is	a	fast-talking	sage	and	I’m	truly	grateful	to	have	worked	
with	him.	Also,	I	worked	with	a	wonderful	facilitator	and	someone	that	is	gifted	with	the	ability	to	listen,	Laura	
Burke.	I	also	want	to	thank	Jabe	Bloom,	whose	closing	keynote	at	Lean	Agile	DC	blew	my	mind	and	put	me	on	a	
different	path.	
REFERENCES		
Liker,	Jeffrey.	The	Toyota	Way.	McGraw-Hill	Education;	2004.	
Rother,	Mike.	The	Toyota	Kata.	McGraw-Hill	Education;	2004.	
Ries,	Eric.	The	Lean	Startup.	Currency;	2011.	
Modig,	Niklas.	This	is	Lean.	Rheologica	Publishing;	2012.	
Hubbard,	Douglas.	How	to	Measure	Anything.	Wiley;	2014.	

