

When	the	Business	Wants	Waterfall:	Adaption	Strategies 	
MARJORIE	FARMER,	Halliburton	

This	work	 discusses	 how	 the	 software	 team	 at	 Halliburton	 has	 adopted	 Agile	methodologies	while	 still	 complying	with	 the	 corporate	
waterfall	mandate.	The	 following	are	addressed:	Changes	encountered,	both	successful	 (e.g.,	engaging	users)	and	not	as	successful	 (e.g.,	
attempting	 the	 transition	 without	 coaching);	 how	 compliance	 was	 handled	 with	 the	 waterfall	 process,	 particularly	 with	 respect	 to	
extensive	 changes	 of	 scope	during	development;	 communication	with	management;	Agile	 coaching	 and	 its	 success;	 and	 challenges	 and	
success	experienced	restructuring	the	roles	of	an	Agile	team.	

1. SITUATION	

In	 January	2014,	 I	 accepted	 the	position	of	 leader	of	 the	wireline	 software	 team	at	Halliburton.	 I	 joined	 this	
team	 after	 spending	 15	 years	 with	 the	 Halliburton	 software	 division	 as	 a	 developer,	 project	 manager,	 and	
development	team	manager.	Most	recently,	I	had	worked	with	all	of	the	business	units	to	implement	a	software	
specific	adaption	of	Halliburton’s	heavy	waterfall	process,	referred	to	as	LIFECYCLE.		

The	wireline	 software	 team	 consisted	 of	 16	members,	 14	 in	Houston,	 two	 in	 Singapore,	 and	16	 offshore	
contractors	in	New	Delhi.	Of	these,	the	junior	most	had	15	years	of	experience	with	Halliburton	and	the	most	
seasoned	had	at	least	25	years	of	experience.	These	were	highly	experienced,	very	capable	software	developers	
and	testers	with	an	intimate	knowledge	of	the	business	and	its	needs.	Several	had	worked	in	other	roles	in	the	
business	unit,	many	as	engineers.	Upon	taking	my	new	position,	they	had	an	established	way	of	doing	things	
and	consistently	delivered	a	quality	product.	However,	they	weren’t	viewed	as	flexible,	and	management	didn’t	
have	good	visibility	of	what	they	were	doing	or	why.	Management	had	made	numerous	changes	to	the	entire	
wireline	technology	department	to	 improve	efficiency	and	technical	capacity,	and	the	software	team	was	not	
part	of	this.		

My	 mandate	 when	 I	 began	 this	 position	 was	 to	 shake	 things	 up.	 Management	 wanted	 to	 see	 increased	
openness,	flexibility,	and	efficiency,	which	needed	to	be	achieved	without	interfering	with	the	team’s	existing	
ability	to	deliver	functional	software.	The	management	perception	was	that	the	team	delivered	critical	value,	
but	they	wanted	more.	One	of	the	Singapore	team	members	resigned	before	I	arrived,	and	I	inherited	two	open	
positions.	At	the	time,	the	team	was	talking	about	becoming	Agile,	but	had	only	begun	tracking	work	progress	
in	two-week	sprints.		

1.1 The	Corporate	Environment	
When	 I	 joined	 the	 wireline	 team,	 Halliburton	 as	 a	 whole	 had	 adopted	 a	 heavy	 waterfall	 process,	 called	
LIFECYCLE,	 which	 all	 technology	 projects	 were	 expected	 to	 comply	 with,	 including	 software	 projects.	 This	
process	 was	 intended	 to	 increase	 the	 success	 of	 all	 technology	 projects,	 and	 was	 primarily	 focused	 on	 the	
delivery	of	expensive,	physical	 tools,	where	prototypes	might	cost	USD	millions	and	minor	changes	could	be	
very	 expensive.	 This	 process	 theoretically	 permitted	 software	 projects	 to	 make	 use	 of	 an	 Agile	 framework	
while	still	complying	with	company	policy.	In	theory,	the	software	team	would	deliver	a	couple	of	light-touch	
gate	reviews	to	upper	management,	and	then	use	Agile	as	an	execution	methodology.	However,	this	approach	
had	not	yet	been	widely	tested,	and	management	buy-in	outside	the	software	teams	was	weak.		

The	 following	 process	 components	 were	 mandatory	 for	 all	 Halliburton	 projects,	 including	 software	
projects:	

• Gate	reviews:	using	a	defined	set	of	template	slides.	
• Risk	management:	using	a	defined	risk	spreadsheet.	
• Business	case:	using	a	defined	business	case	spreadsheet.	

Marjorie Farmer, Halliburton, 3000 N. Sam Houston Pkwy. E, Houston, TX, 77032; Marjorie.Farmer@halliburton.com
Copyright 2019 Halliburton.

When the Business Wants Waterfall: Adaption Strategies: Page 2

	

Other	aspects	of	the	process	were	expected,	but	not	explicitly	mandatory.	

1.2 The	Product	
The	team	was	responsible	for	one	product,	called	Wireline	InSite®	services	(WLI),	which	handled	the	real-time	
collection	of	wireline	logging	data	from	logging	tools	deep	in	oil	wells.	The	product	was	business	critical,	with	
constantly	 changing	 requirements,	 and	 contained	 approximately	 ten	 million	 lines	 of	 code	 in	 multiple	
languages.	A	logging	tool	is	a	complex	and	highly	scientific	instrument,	collecting	data	miles	under	the	earth	at	
megabytes	 per	 second	 by	 bouncing	 various	 signals	 off	 the	 overheated	 rocks	 below.	 Scientists	 spend	 years	
designing	 these	 tools,	 and	 other	 scientists	 spend	 years	 developing	 algorithms	 to	 translate	 pulses	 of	 sound,	
nuclear,	or	magnetic	energy,	into	useful	information	regarding	the	properties	of	the	surrounding	environment.	
These	algorithms,	 once	developed,	must	be	 implemented	as	 functional	 software	and	made	 to	work	with	 the	
actual,	physical	tools.	This	was	the	job	of	the	wireline	software	team.	

The	WLI	project	had	special	challenges	because	requirements	were	driven	by	multiple	tools	projects.	These	
projects	could	insert	extreme	changes	in	the	software	project	scope	and	schedule	on	short	notice	as	the	tools	
projects	changed	requirements	and	slipped	schedules.	This	also	added	constraints	because	effective	testing	of	
the	 software	 required	 access	 to	 the	 physical	 tools,	 and	 tool	 availability	 was	 limited.	 When	 a	 tool	 became	
available,	 all	 other	 priorities	would	 need	 to	 be	 rearranged	 immediate	 so	 testing	 could	 be	 performed	 before	
other	priorities	took	the	tool	elsewhere	again.		

To	handle	the	product,	 the	team	organized	itself	 into	two	groups.	The	tools	team	handled	the	coding	that	
was	 specific	 to	 each	 tool	 and	 the	 implementation	 of	 algorithms	 as	 functional	 software.	 The	 software	
architecture	 tended	 to	 be	 consistent	 from	 one	 tool	 to	 another,	 and	 the	major	 software	 challenges	 involved	
implementing	the	complex	scientific	algorithms	that	collected	and	processed	the	 incoming	data.	The	systems	
team	handled	the	infrastructure	and	architecture	of	the	software	itself,	as	well	as	all	functionality	that	did	not	
directly	 involve	 communication	with	 a	physical	wireline	 tool.	When	 I	 joined	 the	 team,	 the	WLI	product	was	
generally	released	every	six	 to	nine	months	with	whatever	 functionality	was	working	when	 the	release	date	
approached.	

2. IMPLEMENTATION	

2.1 Getting	Started	
When	 I	 joined	 the	 team	 in	 the	 beginning	 of	 2014,	 I	 was	 already	 a	 strong	 supporter	 of	 an	 Agile	 software	
development	approach	because	of	my	previous	experience	with	other	projects.	I	was	determined	that	my	team	
would	convert	 to	Agile.	The	team	was	not	convinced,	but	 I	was	their	new	manager,	and	they	were	willing	to	
give	it	a	try.	

The	conversion	did	not	go	smoothly.	
When	 I	 worked	 out	 the	 adoption	 plan	 with	 my	 team	 leads,	 everyone	 agreed	 that	 the	 first	 step	 in	 our	

adoption	was	to	adopt	the	latest	version	of	Microsoft	Team	Foundation	Server	(TFS),	which	housed	both	the	
code	and	the	work	items.	We	were	getting	some	pressure	from	information	technology	(IT)	to	migrate	anyway,	
and	the	latest	version	of	TFS	included	functionality	for	supporting	Agile.	That	turned	out	to	take	far	longer	and	
involve	far	more	work	than	anyone	expected;	but,	a	couple	of	months	later,	we	finished	our	upgrade.		

While	the	team	was	working	on	upgrading	TFS,	I	was	working	on	staffing.	I	was	able	to	hire	an	experienced	
user	 of	 the	 product,	 an	 engineer	 fresh	 from	 the	 field,	 to	 be	 product	 owner	 in	 Houston,	 as	 well	 as	 a	 less	
experienced	product	owner	in	Singapore,	and	a	developer	in	Singapore.	I	also	began	the	process	to	move	one	of	
my	contract	testers	from	New	Delhi	to	Singapore.	This	would	provide	two	developers,	a	tester,	and	a	product	
owner	 in	 Singapore,	which	was	 a	manufacturing	 center	where	 the	 team	had	 access	 to	 the	 physical	wireline	
tools.	My	hope	was	to	have	the	Singapore	team	do	much	of	the	management	of	the	contractors	 in	New	Delhi	
from	a	more	compatible	time	zone	than	Houston.	

Once	 the	 TFS	 upgrade	 was	 finished,	 we	 began	 our	 wholesale	 adoption	 of	 Agile.	 We	 started	 conducting	
standup	meetings,	backlog	grooming,	story	sizing,	sprint	planning,	demos,	and	retrospectives.	The	result	of	this	
was	that,	because	the	team	spent	so	much	time	in	meetings,	they	barely	had	time	to	get	any	work	done.	There	
were	several	issues	that	the	team	struggled	with,	such	as:	

• Backlog	grooming:	the	team	didn’t	know	how	much	detail	to	provide	in	a	story	and	therefore	invested	a	
large	amount	of	effort	in	providing	far	more	detail	than	was	actually	necessary.	The	team	spent	hours	

When the Business Wants Waterfall: Adaption Strategies: Page 3

	

grooming,	and	often	stayed	 late	 into	 the	evening.	Then,	 in	 the	morning,	someone	always	made	sure	 I	
knew	how	late	they	had	stayed,	and	appreciated	how	hard	they	were	working	to	adopt	Agile.	

• Process	understanding:	everyone	on	the	team	had	their	own	idea	of	how	Agile	was	supposed	to	work	
and	much	 of	 the	 time	 in	 the	meetings	was	 spent	 arguing	 about	 process	 questions.	What	 exactly	 is	 a	
product	owner	and	what	is	he	doing	here?	What	does	a	scrum	master	do	and	who	is	going	to	do	these	
things?	What	kind	of	release	planning	document	do	we	need?	How	do	we	do	acceptance	criteria?	Do	we	
really	have	to	stand	up	in	a	stand	up	meeting?		

• Story	 sizing:	 no	 one	 really	 understood	how	 story	 sizing	was	 supposed	 to	work	 and	 so	 the	 team	 just	
used	 estimated	hours	 of	 effort.	Also,	 initially,	 the	 stories	were	 too	 large	 (sometimes	 far	 too	big)	 and	
tended	to	run	over	into	multiple	sprints.	

• Definition	of	 done:	 this	 generated	 a	 lot	 of	 vigorous	discussion.	The	 team	decided	 that	 a	 definition	of	
done	is	useful;	but,	don’t	we	also	need	a	definition	of	when	a	story	is	ready	to	go	into	a	sprint	in	the	first	
place?	And,	what	do	we	do	with	these	stories	while	they	are	in	various	states;	and	how	many	backlogs	
should	we	be	keeping?	What	are	the	rules	for	moving	a	story	from	one	backlog	to	another?	And,	how	do	
we	make	the	work	management	tool	enable	all	this?	The	team	actually	sorted	this	one	out	themselves,	
after	 multiple	 lengthy	 discussions,	 but	 they	 probably	 would	 have	 been	 a	 lot	 faster	 if	 they	 had	 had	
someone	to	talk	to	about	what	other	teams	have	done.	

• Meeting	attendance:	several	of	the	team	members,	mostly	developers,	ended	up	spending	a	lot	of	time	
in	 meetings	 they	 didn’t	 consider	 relevant	 to	 them;	 this	 generated	 a	 considerable	 amount	 of	
unhappiness.	Why	does	Bob	need	to	be	 in	a	meeting	with	Michael	when	Bob	doesn’t	care	at	all	what	
Michael	 is	doing	and	couldn’t	help	anyway,	because	Michael	deals	with	nuclear	physics	and	Bob	is	an	
expert	 in	 sound?	 And,	 besides	 this,	 Bob	 had	much	more	 important	 things	 to	 be	 doing	 than	 listen	 to	
Michael	figure	out	story	sizing	in	yet	another	meeting.	And,	why	does	anyone	need	to	know	every	day	
what	he’s	doing	anyway;	Bob	wants	to	know.	Hasn’t	he	been	doing	his	job	just	fine	for	the	last	30	years?	

	
I	initially	expected	to	deal	with	these	sorts	of	issues	by	supplying	training	and	by	providing	coaching	myself.	

I	was	able	to	arrange	the	two-day	scrum	master	training	class	for	most	of	the	team;	however,	that	turned	out	to	
be	insufficient.	My	own	coaching	didn’t	turn	out	to	be	sufficient	either,	as	I	wasn’t	that	great	of	a	scrum	coach,	
and	I	also	struggled	with	time	availability	because	of	my	other	responsibilities.	As	the	struggles	continued,	the	
team	 worked	 extra	 hours	 and	 grew	 increasingly	 unhappy.	 There	 began	 to	 be	 occasional	 shouting	 matches	
between	team	members	and	the	complaints	became	louder.	I	knew	I	needed	to	do	something	more.	

Fortunately,	this	was	in	early	2014	when	the	price	of	oil	was	hovering	at	approximately	USD	100/bbl	and	I	
was	still	in	my	honeymoon	period	with	my	own	management.	I	had	some	money	to	work	with.	And,	I	knew	a	
good	scrum	coach.	I	called	up	Simon	Orrell,	from	Snowdolphin,	and	he	came	to	Houston	and	assisted	the	team.	
He	was	able	to	get	the	team	aligned	with	respect	to	how	the	process	was	supposed	to	work.	After	just	one	week	
of	 coaching,	 the	 team	was	delighted	with	him	and	much	happier	with	Agile.	Half	 the	 team	came	by	at	 some	
point	to	compliment	or	appreciate	Simon.	With	several	more	sessions	from	him,	I	expected	the	team	to	become	
comfortable	 with	 Agile	 in	 short	 order.During	 all	 of	 this,	 the	 team	 acquired	 a	 new	 project,	 the	 Halliburton	
Perforating	 Toolkit	 (HPTK).	 This	was	 the	 first	 additional	 product	 the	 team	 had	 taken	 on,	 ever,	 and	was	 an	
example	of	the	team’s	new	openness	and	flexibility.	

2.2 Observations	
The	initial	adoption	of	Agile	by	the	team	turned	out	to	be	significantly	harder	than	I	expected.	I	had	acquired	
my	own	Agile	skills	gradually,	over	a	period	of	years,	and	I	underestimated	how	hard	it	would	be	to	pick	it	all	
up	at	once.	I	knew	Agile	worked	because	I	had	experienced	it,	but	I	didn’t	know	how	to	get	there.	The	guidance	
from	a	capable	Agile	coach	made	the	critical	difference	and,	without	that,	I	think	we	would	likely	have	given	up	
within	another	couple	of	months.	

I	never	really	managed	to	acquire	a	good	scrum	master.	I	assigned	various	team	members	to	the	position,	
but	the	role	never	aligned	well	with	their	skill	sets	and	the	gap	was	a	constant	pain	point.		

I	did	not	have	strong	buy	in	from	the	team	when	I	started	forcing	the	transition.	They	complied	because	I	
was	their	manager,	but	I	doubt	they	would	have	continued	to	stay	with	it	during	the	hard	parts	if	I	hadn’t	taken	
other	 steps	 to	 earn	 credibility	 with	 them.	While	 I	 set	 the	 overall	 direction	 of	 adopting	 Agile,	 I	 did	 a	 lot	 of	
listening	about	how	we	did	the	actual	implementation.	Additionally,	I	took	a	number	of	steps	as	a	manager	to	
look	out	for	my	team,	and	they	recognized	that.	For	instance,	I	acquired	several	overdue	promotions	of	team	

When the Business Wants Waterfall: Adaption Strategies: Page 4

	

members,	 arranged	 a	 company-funded	 snack	 drawer	 for	 the	 team,	 and	 ensured	 they	 earned	 a	 fair	 share	 of	
awards	when	awards	were	being	handed	out.	We	held	team	parties	for	releases	and	service	anniversaries	and	
so	forth.	They	ensured	I	knew	all	about	the	pain	they	were	suffering,	but	they	kept	going.	Also,	I	think	I	had	an	
advantage	because	of	the	age	and	experience	level	of	the	team.	They	were	a	 level	headed	bunch	and	weren’t	
thrown	by	the	initial	rough	spots.	They	had	experienced	a	lot	of	“management	initiatives”	over	time	and	were	
willing	to	patiently	maintain	cooperation	(mostly)	until	it	either	succeeded	or	failed.		

Once	 the	Agile	coach	provided	his	help,	a	number	of	pains	became	sorted.	The	 team	was	able	 to	do	 their	
planning	at	 the	right	 level	of	detail,	and	he	managed	 to	align	everyone	on	how	the	process	was	supposed	 to	
work.	 The	meeting	 load	 became	manageable.	 He	 sat	with	 them	 and	worked	 out	 a	 list	 of	 example	 stories	 of	
different	sizes	to	be	used	for	reference.			

The	 earliest	 signs	of	 success	 came	 from	 the	 testers,	who	 liked	 to	hear	 at	 the	 standup	meetings	what	 the	
developers	were	working	on.	Shortly	after	that,	the	tools	team	development	lead,	who	had	initially	been	quite	
skeptical,	 also	began	expressing	his	appreciation	 for	 the	 standup	meetings,	 as	a	way	 to	get	a	 regular	update	
from	his	own	people.	

One	 thing	we	 never	 had	 serious	 trouble	with	was	 standup	meetings.	 I	 think	 this	was	 because,	 from	 the	
beginning,	we	actually	made	everyone	 stand	up.	Even	when	 the	 teams	were	 large,	 the	meetings	never	went	
long.	For	a	little	while,	we	charged	a	quarter	to	anyone	who	showed	up	late,	but	that	faded	as	people	got	used	
to	the	meeting.	The	standup	meetings	were	the	first	Agile	practice	that	the	team	saw	value	in	because	of	the	
enhanced	communication.	

3. ADAPTION	STRATEGIES	

3.1 Checking	the	Boxes	
While	the	team	was	busy	figuring	out	Agile,	we	still	had	to	live	in	a	waterfall	world.	We	managed	to	make	that	
work,	and	even	raised	the	team’s	reputation	as	a	highly	performant	team	through	a	number	of	strategies.	

3.1.1 What we Did
A	certain	number	of	 practices	were	 explicitly	mandatory	 according	 to	 the	 corporate	LIFECYCLE	process.	All	
projects	 were	 required	 to	 do	 gate	 reviews,	 risk	 analysis,	 and	 business	 cases.	 Other	 components	 of	 the	
LIFECYCLE	process	were	left	to	the	discretion	of	the	manager	to	determine	applicability	to	any	given	particular	
project.	My	approach	to	 these	was	to	comply,	well,	with	all	 the	mandatory	process,	while	shielding	the	 team	
from	them	as	much	as	possible.	I	took	advantage	of	the	discretion	allowed	to	the	manager	for	the	remainder,	
and	evaluated	the	applicability	of	each	of	these	to	my	team’s	project.	Only	those	parts	of	the	process	that	were	
both	applicable	and	added	value	were	adopted.	

For	software	projects,	only	two	gates	were	required.	The	first	was	the	gate	between	planning	and	execution	
when	 the	 project	 was	 funded.	 The	 second	 was	 the	 release	 gate,	 which	 provided	 approval	 to	 complete	 and	
release	a	product.	I	was	fortunate	in	that	I	had	a	lot	of	experience	performing	gate	reviews	and	had	a	good	idea	
of	the	sort	of	information	our	stakeholders	would	be	searching	for.	Our	challenges	with	the	gate	process	was	
that	 our	boundary	between	planning	 and	development	wasn’t	 as	 crisp	 as	waterfall	 expected,	 and	our	 scope	
changed	wildly	between	planning	and	release.	Our	advantage	was	that,	because	the	scope	was	business	critical	
to	 deliver	 the	 physical	 tools,	 everyone	 knew	we	were	 going	 to	 fund	 the	 product,	 so	 the	 gate	was	more	 of	 a	
formality.	It	was	a	good	communication	vehicle	and	it	forced	some	valuable	project	hygiene;	however,	no	one	
was	going	to	stop	funding	WLI	releases.	Instead	of	focusing	on	project	funding	issues,	I	focused	on	presenting	
the	information	that	interested	the	stakeholders,	that	is,	did	we	know	what	we	were	doing	and	did	it	align	with	
business	 needs?	 I	 used	 the	 standard	 slide	 templates	 and	 then	 used	 Standard	 English	 instead	 of	 computer	
jargon.	In	general,	the	gate	requirements	were	far	higher	level	than	the	day	to	day	work	of	Agile,	and	I	was	able	
to	avoid	distracting	everyone	on	the	team	but	the	project	manager,	the	architect,	and	the	product	owner.	I	also	
held	pre-reviews	with	my	most	critical	stakeholders	before	the	gate	reviews	to	get	their	feedback	and	ensure	
issues	were	addressed	before	the	gate	review	itself.	Under	no	circumstances	did	I	want	surprises	in	those	gate	
reviews.		

Compliance	with	 the	risk	analysis	was	easier	and	I	satisfied	 this	by	performing	a	risk	review	before	each	
gate.	The	business	case	requirement	was	even	easier	because	that	was	the	responsibility	of	the	business	side,	
not	my	team.	

When the Business Wants Waterfall: Adaption Strategies: Page 5

	

At	this	time,	my	boss	moved	on	to	another	position,	and	a	new	director	moved	into	his	position.	He	made	
the	 request	 to	 my	 team	 and	 me	 that	 we	 avoid	 the	 use	 of	 computer	 jargon,	 including	 Agile	 jargon,	 in	 our	
communications	outside	our	team.	This	was	a	useful	and	sometimes	challenging	discipline.	

Through	all	this,	we	applied	our	Agile	principles	to	delivering	the	product.	We	time	boxed	the	release	and	
delivered	 the	 most	 important	 scope	 first.	 We	 tried	 to	 be	 always	 done-done	 with	 our	 stories,	 but	 that	 was	
harder	because	done-done	required	physical	tools	to	test	on,	and	those	weren’t	always	available.	

3.1.2 What Happened
The	software	gates	from	my	team	were	some	of	the	first	gate	reviews	within	the	wireline	business	unit	because	
the	business	unit	was	fairly	early	 in	adopting	the	LIFECYCLE	process.	Given	that	we	scheduled	the	gates,	 the	
gates	were	 informative,	 our	 stakeholders	were	on	board,	 and	we	 seemed	 to	know	what	we	were	doing,	 the	
business	was	pleased	with	us.	After	a	year	or	two,	the	process	people	began	noticing	that	what	we	planned	in	
the	 planning	 gate	 and	 what	 we	 delivered	 in	 the	 release	 gate	 didn’t	 have	 much	 to	 do	 with	 each	 other.	 We	
explained	 how	 our	 requirements	 changed	 because	 the	 requirements	 of	 the	 tools	 projects	 we	 supported	
changed,	and	the	process	people	didn’t	 like	that	answer.	But	by	this	time,	we	had	established	credibility	as	a	
functioning	team	through	a	regular	heartbeat	of	delivering	value.	No	one	made	any	serious	effort	to	force	us	to	
change,	 so	 we	 just	 moved	 on.	 We	 continued	 doing	 gates.	 We	 continued	 changing	 the	 scope	 according	 to	
business	need,	and	the	process	people	continued	to	occasionally	complain.		

Monthly	project	reports	and	other	management	communications	became	more	interesting	because	we	had	
to	pull	out	all	Agile	 terminology.	After	a	 few	early	slipups,	 and	glares	 from	my	boss,	we	 learned	 to	 translate	
Agile	 terminology	 into	 the	corresponding	English	 terminology.	Sprints	became	two	week	work	 intervals.	We	
stopped	talking	about	story	points	at	all.	We	talked	about	functionality	rather	than	stories.	This	actually	helped	
our	credibility	also	because	we	were	able	to	communicate	effectively	with	our	leadership	in	terminology	they	
understood.			

We	managed	to	hold	rigorously	to	our	defined	time	box	and	became	even	more	consistent	about	delivering	
on	time,	every	time.	Also,	as	we	prioritized	the	most	important	scope	first	according	to	business	need,	we	never	
failed	to	deliver	what	our	stakeholders	wanted.	We	did	have	to	go	to	our	primary	stakeholder	a	couple	of	times	
to	sort	out	conflicting	priorities,	but	our	other	stakeholders	accepted	these	decisions.	

3.1.3 Reflections
There	were	a	lot	of	things	we	did	that	helped	us	continue	to	be	Agile	in	a	waterfall	world.	The	biggest	of	these	
was	 to	 establish	 credibility.	 The	 most	 important	 way	 we	 established	 and	 maintained	 credibility	 was	 by	
delivering	useful	software.	We	leveraged	the	Agile	principles	of	always	prioritizing	the	most	important	things	
first,	 emphasizing	business	need	 rather	 than	compliance	 to	 a	plan.	We	also	delivered	 reliably	on	 time	every	
time.	Then,	we	make	a	point	of	exhibiting	competence	in	other	areas,	such	as	dealing	with	an	IT	audit.	 I	also	
made	 a	 point	 of	 highlighting	 all	 successes	 to	 our	 management	 structure	 as	 well	 as	 any	 special	 actions	 or	
evidence	 of	 special	 competence	 by	 team	 members.	 This	 resulted	 in	 an	 (accurate)	 perception	 of	 a	 highly	
functional	team,	and	few	managers	or	executives	wanted	to	mess	with	a	highly	functional	team	to	make	them	
comply	with	process.		

Of	all	the	waterfall	things	requested	of	us,	the	most	impactful	were	the	gate	reviews,	and	we	complied	with	
those.	I	actually	believe	those	helped	our	ability	to	deliver	rather	than	hurt	us,	despite	their	waterfall	origins.	
My	experience	from	a	number	of	software	projects	is	that	projects	that	involve	gate	reviews	tend	to	be	more	
successful	 than	 those	 that	 don’t.	 The	 reviews	 force	 a	 level	 of	 discipline	 that	 can	 be	 very	 good	 for	 a	 project.	
Dangling	 problem	 areas	 are	 cleaned	 up	 for	 the	 review,	 risks	 are	 reviewed	 and	 mitigated,	 and	 pending	
questions	are	sorted	out.	In	a	perfect	Agile	world,	this	all	shouldn’t	be	necessary,	but	most	projects	fall	short	of	
that	 level	of	agility.	The	gate	reviews	also	provide	executives	and	stakeholders	a	better	level	of	visibility	into	
the	 project	 and	 team,	 and	 enhance	 the	 quality	 of	 project	 sponsorship.	 Lastly,	 the	 rigorous	 format	 forces	
communication	into	a	language	that	reviewers	are	familiar	with,	discouraging	the	use	of	computer	jargon.		

Just	as	the	team	needed	to	trust	each	other	to	be	effective,	our	management	needed	to	be	able	to	trust	the	
team	 to	 know	 that	 the	 team	 was	 being	 effective	 stewards	 of	 the	 company’s	 money.	 Compliance	 with	 the	
mandatory	aspects	of	the	waterfall	process	was	a	major	factor	in	earning	that	trust.		
The	 restriction	 about	 not	 using	 Agile	 terminology	 was	 actually	 a	 useful	 discipline.	 It	 would	 have	 provided	
different	benefits	to	report	to	a	management	structure	that	understood	software	and	could	provide	software	

When the Business Wants Waterfall: Adaption Strategies: Page 6

	

management	expertise	and	sponsorship;	but,	this	wasn’t	how	the	Halliburton	business	units	were	set	up.	As	it	
was,	we	 learned	 critical	 skills	 about	 speaking	 to	 our	 leadership	 in	 their	 terminology	 and	 avoiding	 jargon.	 It	
made	them	better	able	understand	our	needs	and	to	support	us.	

3.2 	The	Sky	Falls:	Oil	Crash	of	2014	
In	 June	of	2014,	 the	price	of	 a	barrel	 	 of	West	Texas	 Intermediate	 (WTI)	 crude	oil	was	USD	106.	 In	 January	
2015,	it	was	USD	45/bbl.	In	February	2016,	it	had	fallen	below	USD	30/bbl.	This	is	known	in	the	oil	industry	as	
the	 oil	 crash	 of	 2014,	 and	 it	 devastated	 the	 industry.	 The	 oil	 business	 is	 a	 cyclic	 industry	 and	 established	
companies	 in	 the	 industry,	 including	 Halliburton,	 have	 survived	many	 of	 these.	 They	 knew	 how	 to	 survive	
another	one.	The	cuts	began	almost	 immediately	when	the	price	of	oil	began	to	decline.	Agile,	which	we	had	
adopted	when	times	were	good,	now	needed	to	work	for	us	when	times	were	hard.		

3.2.1 What we Did
The	first	cut	to	hit	was	the	mandate	to	cut	all	consultants,	and	I	had	to	release	our	Agile	coach.	He	was	about	
half	way	through	our	planned	adoption	path.	The	next	mandate	was	to	cut	all	unnecessary	expenses,	thus	the	
end	of	the	snack	drawer.	Shortly	after	that	came	the	first	round	of	layoffs,	and	I	let	my	test	lead	in	Houston	go.	
Then,	we	had	a	round	of	cutting	capital,	and	I	 found	some	slack	 in	my	budget	and	cut	a	 few	people	from	the	
offshore	team.	Raises	were	reduced	and	delayed,	bonuses	stopped,	and	promotions	became	rare.		

Next	was	another	round	of	layoffs,	deeper	this	time,	and	I	had	to	cut	two	people.	I	was	educated	by	my	boss	
that	my	smart	decision	would	be	to	cut	two	people	from	my	Singapore	team	and	close	my	Singapore	office.	I	
cut	a	Singapore	developer	and	 the	product	owner	 there,	 stopped	 the	 incipient	move	of	an	offshore	 tester	 to	
Singapore,	and	moved	the	remaining	Singapore	developer	to	Houston.	Several	months	after	that,	I	was	directed	
to	cut	my	budget	substantially	but	not	told	how.	By	this	time,	I	had	trimmed	all	the	slack	out	of	my	budget,	and	
my	only	option	was	to	fire	people.	On	this	occasion,	I	reduced	my	offshore	team	by	half.		There	were	more	cuts	
after	that.	I	lost	my	configuration	management	person	in	another	round	of	layoffs.	

It	wasn’t	all	bad	news.	There	were	several	upturns	in	the	price	of	oil	on	the	way	down,	and	so	cost	pressure	
sometimes	eased	up.	 I	had	several	occasions	when	I	was	able	 to	extract	unexpected	money	from	my	budget,	
and	I	mostly	used	that	to	recover	headcount	in	my	offshore	team.	The	best	upside	for	my	team	was	the	sudden	
availability	 of	 experienced	wireline	 engineers	 on	 the	 job	market.	 I	was	 able	 to	hire	 an	 experienced	wireline	
field	engineer	as	a	contract	tester	in	Houston,	and	also	two	engineers	to	help	my	team	in	India.		

3.2.2 What Happened
The	loss	of	our	Agile	coach	hurt,	but	it	turned	out	that	he’d	done	enough.	By	this	time,	the	team	pretty	much	
knew	what	 they	were	doing	with	Agile	and	were	able	 to	continue	on	without	him.	The	cutting	of	half	of	 the	
offshore	team	turned	out	to	hurt	 far	 less	than	I	 thought	 it	would.	We	kept	the	best	and	most	experienced,	of	
course;	 and,	 with	 the	 smaller	 team,	 these	 folks	 were	 now	 able	 to	 spend	 their	 time	 working	 instead	 of	
supporting	their	less	experienced	team	members.	Productivity	was	not	appreciably	impacted.	

During	this	time	period,	the	experience	level	of	my	team	mattered	significantly.	They	had	all	been	through	
downturns	 before	 and	 knew	 how	 these	 things	 worked.	 They	 also,	 individually,	 had	 a	 pretty	 good	 feel	 for	
whether	 they	personally	were	 at	 risk	of	 losing	 their	 jobs.	Because	 the	people	 that	 I	 released	didn’t	 surprise	
anyone,	they	didn’t	worry	too	much.	They	just	buckled	down,	with	the	only	occasional	complaint	about	the	loss	
of	the	snack	drawer,	and	toughed	it	out.	I	didn’t	have	any	voluntary	attrition	during	this	period.		

The	 chance	 to	 acquire	 experienced	 wireline	 engineers	 was	 invaluable	 and	 substantially	 increased	 the	
capacity	of	the	team.	I	only	wish	I	had	been	able	to	locate	the	money	to	hire	more.	All	three	of	the	contractors	I	
picked	up	during	this	period	are	still	with	the	team	today.		

The	 team	maintained	 their	Agile	practice,	which	was	now	becoming	 ingrained.	With	 fewer	people	on	 the	
team,	we	started	encountering	more	priority	conflicts	and	depended	on	Agile	to	keep	us	focused	on	value.	We	
didn’t	 worry	 about	 the	 original	 plan,	 but	 delivered	 the	 most	 important	 functionality	 first.	 When	 our	
requirements	became	too	much	for	the	team	to	handle,	we	went	to	our	key	stakeholder	and	asked	him	to	guide	
us	 regarding	priorities.	This	 resulted	 in	 the	 regular	occurrence	 that	our	planned	scope	and	our	actual	 scope	
when	 we	 released	 had	 very	 little	 to	 do	 with	 each	 other,	 which	 was	 exposed	 clearly	 at	 the	 gate	 reviews.	
Occasionally,	as	noted	previously,	one	of	the	process	people	would	notice	and	call	us	on	it.	We	would	attempt	
to	explain	why	software	was	different	 than	 tool	projects,	 and	nobody	ever	wanted	 to	hear	how	“software	 is	
different.”	In	the	end,	we	just	kept	delivering	through	the	downturn,	and	no	one	wanted	to	mess	us	up.		

When the Business Wants Waterfall: Adaption Strategies: Page 7

	

I	spent	a	lot	of	my	time	interacting	with	my	management	and	with	finance	people	during	this	period	as	they	
sought	to	cut	waste	in	every	corner	of	the	business.	I	faced	two	major	challenges.	The	first	was	justifying	my	
budget	 as	 a	 whole,	 as	 software	 is	 expensive.	 The	 second	 was	 justifying	 my	 product	 owner.	 Because	 tools	
projects	didn’t	have	product	owners,	management	didn’t	understand	why	software	teams	needed	them.	And,	
the	explanation	that	“software	 is	different”	doesn’t	work	well	 in	 the	best	of	 times	(after	all,	everyone	always	
attempts	to	make	the	case	“but	my	circumstance	is	different”),	and	it	really	didn’t	work	well	when	every	spare	
penny	was	being	squeezed	out	of	 the	system.	 I	put	 together	presentations	explaining	the	role	of	 the	product	
owner,	presentations	justifying	the	value	of	the	product	owner,	examples	of	where	he	had	added	value	that	we	
wouldn’t	have	realized	otherwise,	and	compliments	from	our	users	in	the	field	who	said	things	like	“now	we	
have	someone	we	can	talk	to	on	the	software	team.”	I	would	think	I	had	put	the	question	to	rest,	and	then	a	few	
months	later,	it	would	come	around	again,	and	I	would	do	the	whole	exercise	again.		

I	 was	 able	 to	 keep	 my	 product	 owner,	 and	 I	 credit	 that	 to	 a	 couple	 of	 factors.	 First,	 there	 were	 other	
software	 teams	 in	Halliburton,	and	 they	had	product	owners	also.	This	made	 for	a	much	more	credible	case	
that	software	really	was	different.	Second,	though,	was	just	sheer	persistence	in	defending	him.	That,	too,	was	
another	case	of	credibility.	Because	the	team	had	established	that	we	knew	what	we	were	doing,	and	we	said	
we	 needed	 a	 product	 owner,	management	 eventually	 accepted	 that	 and	moved	 on	 to	 look	 for	 cuts	 in	 other	
areas.	That	said,	I’m	just	as	glad	I	didn’t	also	need	to	defend	a	scrum	master	position	at	the	same	time.	I	didn’t	
have	a	dedicated	scrum	master	 the	 same	way	 I	had	a	dedicated	product	owner,	 and	all	 the	various	people	 I	
tried	 in	the	position	were	doing	other	things	as	well.	By	the	end	of	2016,	 the	team’s	budget	had	been	cut	by	
25%,	employee	headcount	had	been	cut	by	25%,	and	the	team	was	delivering	their	original	WLI	project	and	
also	the	additional	project	of	HPTK.	This	was	with	a	substantially	reduced	budget	and	a	substantially	increased	
workload,	and	they	did	it	leveraging	Agile.		

3.2.3 Reflections
Credibility	was	priceless	in	this	tough	circumstance.	One	of	the	things	we	did	as	part	of	our	Agile	adoption	was	
to	strictly	time-box	our	releases.	Because	we	were	able	to	be	flexible	about	our	scope,	this	meant	we	released	
on	time,	every	time.	This	consistency	was	useful	to	our	users,	who	could	count	on	a	regular	release	schedule,	
and	it	also	made	for	excellent	performance	metrics.	There	was	the	whole	question	of	scope,	which	the	process	
people	 tried	 to	 bring	 up	 occasionally;	 but,	 because	 we	 had	 focused	 on	 maximum	 value,	 our	 users	 and	
stakeholders	 were	 happy	with	 us.	 This	 gave	 us	 some	 room	 to	 insist	 on	 special	 considerations,	 like	 flexible	
scope	 and	 a	 dedicated	 product	 owner.	 In	 general,	 I	 don’t	 recommend	 drastic	 industry	 downturns.	 They	 are	
unpleasant	 in	all	 sorts	of	ways.	That	said,	 there’s	opportunity	 in	everything,	and	we	did	cut	some	waste	and	
pick	up	some	really	good	people	on	the	team.	The	Agile	practices	that	added	the	greatest	value	included:	

• First	and	 foremost,	prioritizing	 the	most	 important	 scope	 first	and	adjusting	easily	 to	 significant	and	
constant	changes	of	scope.	This	allowed	us	to	maintain	user	satisfaction	as	staffing	was	reduced.	

• Time	boxing	our	release	schedule.	We	delivered	on	time	every	time,	and	that	allowed	us	to	build	up	a	
stock	of	credibility	we	were	able	to	leverage.	

• Standup	meetings.	These	significantly	improved	intra-team	communication.	This	contributed	to	faster	
resolution	of	issues,	and	better	coordination	between	development	and	testing.	

• Retrospectives.	 These	 gave	 team	members	 a	 chance	 to	 vent	 and	 also	 helped	 ensure	 that	 issues	 got	
bubbled	up	and	addressed.		

• The	 product	 owner.	 He	was	 able	 to	 significantly	 improve	 our	 link	 to	 our	 users,	which	 also	 included	
more	 and	 better	 field	 tests	 of	 our	 software	 prior	 to	 release.	 He	 also	 helped	 to	 coordinate	 with	
stakeholders,	especially	around	scope	prioritization.	He	also	acted	as	a	 touchpoint	of	our	department	
with	various	other	digital	initiatives	in	Halliburton	to	ensure	our	business	unit’s	needs	were	addressed.	

4. WHAT	HAS	HAPPENED	SINCE	

One	of	the	best	measures	of	the	value	of	Agile	is	what	the	team	chose	to	do	once	I	was	no	longer	around	to	push	
it.	I	have	been	gone	from	this	team	for	two	and	a	half	years	now,	and	the	team	has	settled	in	using	their	own	
best	practices.	They	continue	to	make	use	of	many	Agile	practices,	but	with	their	own	team	variations.	

The	thing	they	most	retained	are	the	Agile	ceremonies.	The	senior	most	development	lead,	who	was	initially	
quite	suspicious	of	Agile,	says	now	that	it’s	natural	and	he	“can’t	imagine	doing	software	any	other	way.”	They	
have	standup	meetings	every	day.	Backlog	grooming	is	still	performed	before	the	sprint,	and	the	team	conducts	

When the Business Wants Waterfall: Adaption Strategies: Page 8

	

sprint	planning,	 sprint	 reviews,	demos,	and	retrospectives.	Story	sizing	 is	 still	performed	by	comparing	new	
stories	to	those	existing,	and	the	list	of	reference	stories	is	still	posted	on	the	wall	of	every	conference	room	the	
team	uses.	

The	various	implementation	teams	attempted	to	share	their	workload	so,	as	a	team,	they	could	succeed	or	
fail	 together.	This	worked	 for	 the	 systems	 team	and	 the	HPTK	 team,	but	 failed	 for	 the	 tools	 team.	The	 tools	
team	was	responsible	for	integrating	scientific	algorithms	and	physical	tools	into	the	software,	and	each	kind	of	
tool	was	 very	 different	 from	 the	 others.	 The	 developer	 and	 tester	who	 understood	 nuclear	 physics	 had	 too	
different	 of	 a	 skill	 set	 from	 the	 people	 who	 understood	 acoustic	 imaging	 or	 the	 people	 who	 worked	 with	
magnetics.	Those	people	couldn’t	help	other	 team	members,	and	actually	weren’t	even	 interested	 in	wasting	
their	time	listening	to	some	other	team	member’s	progress	and	implementation	details.	Functionally,	the	tools	
team	broke	down	into	tiny	subteams	of	maybe	one	developer,	one	tester,	and	a	few	ancillary	folks,	such	as	the	
dev	lead.		

The	product	owner’s	workload	was	too	high,	so	various	team	members	who	were	expert	on	the	business	
need	 also	 shouldered	 some	of	 the	 load.	 The	 product	 owner	 now	manages	 the	 initial	 release	 scope,	working	
with	 the	 stakeholders	 to	 manage	 priorities.	 He	 defines	 features,	 but	 developers	 and	 testers	 define	 the	
individual	stories.	He	manages	user	acceptance	testing	and	acts	as	the	contact	point	for	the	business.	

Development	leads	are	now	acting	as	scrum	masters.	This	would	normally	be	considered	a	bad	practice	for	
a	manager	 to	act	as	 scrum	master	 for	his	own	people,	but	 it	 seems	 to	be	working	here.	The	 individual	 team	
members	are	sufficiently	experienced	and	do	not	require	nor	 tolerate	extensive	management.	Therefore,	 the	
dev	lead	is	still	acting	more	as	the	classic	scrum	master	servant	leader	role.		

5. OVERALL	REFLECTIONS	

The	Agile	adoption	turned	out	to	be	far	harder	than	I	thought	it	would	be.	I	grew	into	my	own	Agile	expertise	
over	 time,	 at	 least	 somewhat	 synchronously	with	 the	 industry	 as	 a	whole,	 and	 the	 transition	was	 relatively	
painless.	I	didn’t	realize	how	much	of	a	change	this	would	be	to	tackle	all	at	once.	I	had	thought	that	some	third-
party	training	and	some	coaching	from	me	would	be	sufficient,	and	it	wasn’t.	I	don’t	know	what	we	would	have	
done	without	the	help	of	our	Agile	coach.		

We	succeeded	reasonably	well	in	operating	in	a	waterfall	environment.	The	gates	provided	a	certain	useful	
discipline,	a	 time	to	clean	up	 lingering	 issues	and	a	 framework	to	communicate	with	management,	sponsors,	
and	 stakeholders	 in	 their	 language,	which	 led	 to	 improved	 sponsorship	 and	 general	management	 support.	 I	
can’t	complain	about	the	requirement	to	perform	risk	mitigation	occasionally,	either.	That’s	a	good	discipline	
and	also	provided	us	a	generally	accepted	framework	to	escalate	our	needs.	In	general,	we	used	Agile	to	deliver	
effectively,	 and	 the	waterfall	process	 to	 communicate	effectively.	The	 combination	worked	well.	The	 regular	
compliance	with	the	corporate	process	definitely	raised	management	trust	in	the	team.		

The	discipline	of	communicating	in	layman’s	terms	instead	of	software	or	scrum	jargon	was	useful.	Our	key	
stakeholder	was	happy	to	hear	questions,	such	as	“we	have	more	work	on	our	plate	that	we	can	do	right	now.	
What’s	most	important?”	We	got	the	information	we	needed	with	no	software	jargon	involved.	Every	so	often,	
we	would	 need	 to	 explain	 to	 various	managers	 and	 stakeholders	 that	we	performed	 our	work	 in	 two-week	
chunks,	but	that	wasn’t	hard	to	explain	either.	The	leads	of	the	wireline	software	team	have	a	few	of	their	own	
recommendations	to	pass	on	to	other	teams	considering	adopting	Agile,	in	a	waterfall	environment	or	not:	

• Watch	the	human	side.	People	are	different	and	need	to	be	treated	differently	to	be	most	effective.	
• It’s	good	to	rotate	people	through	different	roles,	if	only	briefly,	to	gain	experience	and	perspective.	
• Stories	need	meaningful	titles.	Sometimes	if	acceptance	criteria	are	not	defined,	titles	are	all	you	have.	
• Keep	the	backlog	in	order	so	you	know	what’s	going	on	and	have	a	leg	up	on	the	next	release.	

6. ACKNOWLEDGMENTS	

Gratitude	 is	extended	to	the	team	who	stuck	with	 it	all	 through	our	successes	and	failures	 in	adopting	Agile.	
Special	 thanks	 go	 to	 the	 team	 leads,	 including	 Fabian	 Rojas,	 James	Wang,	 Horacio	 Zea,	 and	 Javier	 Gonzales.	
They	showed,	most	importantly,	patience,	dedication,	commitment,	and	common	sense.	Also,	many	thanks	to	
Simon	Orrell,	 for	his	 valuable	 coaching,	without	which	we	would	not	have	been	nearly	 as	 successful,	 and	 to	
Avraham	Poupko,	whose	help	and	guidance	in	the	writing	of	this	paper	was	invaluable.	

